Openssh Server



Name

sshd - OpenSSH SSH daemon

We use OpenSSH(7.7 & 8.1) OS: Windows Server 2019 Standard. From time to time, the service hangs - although the state of the service is running (in service management). Configure an OpenSSH Server on Windows Setup an SSH Login Without a Password Using a Private Key OpenSSH is a set of applications providing encrypted communication sessions over a computer network using the SSH protocol. Procedure: How to Install the OpenSSH Server on Windows. OpenSSH has been added to Windows as of autumn 2018, and is included in Windows 10 and Windows Server 2019. SSH is based on a client-server architecture where the system the user is working on is the client and the remote system being managed is the server.

Synopsis

sshd [-46DdeiqTt] [-bbits] [-Cconnection_spec] [-fconfig_file] [-glogin_grace_time] [-hhost_key_file] [-kkey_gen_time] [-ooption] [-pport] [-ulen]

Description

May 23, 2020 Start / Stop / Restart / Reload OpenSSH Server on Ubuntu Latest version of Ubuntu such as Ubuntu Linux 16.04 LTS or 18.04 LTS and others use the systemctl command to control ssh server on Ubuntu. Older version use the service command.

sshd (OpenSSH Daemon) is the daemon program for ssh(1). Together these programs replace rlogin(1) and rsh(1), and provide secure encryptedcommunications between two untrusted hosts over an insecure network.

sshd listens for connections from clients. It is normally started at boot from /etc/rc. It forks a new daemon for each incoming connection.The forked daemons handle key exchange, encryption, authentication, command execution, and data exchange.

sshd can be configured using command-line options or a configuration file (by default sshd_config(5)); command-line options override values specifiedin the configuration file. sshd rereads its configuration file when it receives a hangup signal, SIGHUP, by executing itself with the name and optionsit was started with, e.g. /usr/sbin/sshd.

The options are as follows:

-6' Forces sshd to use IPv6 addresses only.

-bbits
Specifies the number of bits in the ephemeral protocol version 1 server key (default 1024).

-Cconnection_spec
Specify the connection parameters to use for the -T extended test mode. If provided, any Match directives in the configuration file that wouldapply to the specified user, host, and address will be set before the configuration is written to standard output. The connection parameters are supplied askeyword=value pairs. The keywords are 'user', 'host', and 'addr'. All are required and may be supplied in any order, either with multiple -Coptions or as a comma-separated list.

-D' When this option is specified, sshd will not detach and does not become a daemon. This allows easy monitoring of sshd.

-d' Debug mode. The server sends verbose debug output to the system log, and does not put itself in the background. The server also will not fork andwill only process one connection. This option is only intended for debugging for the server. Multiple -d options increase the debugging level. Maximumis 3.

-e' When this option is specified, sshd will send the output to the standard error instead of the system log.

-fconfig_file
Specifies the name of the configuration file. The default is /etc/ssh/sshd_config. sshd refuses to start if there is no configuration file.

-glogin_grace_time
Gives the grace time for clients to authenticate themselves (default 120 seconds). If the client fails to authenticate the user within this many seconds, theserver disconnects and exits. A value of zero indicates no limit.

-hhost_key_file
Specifies a file from which a host key is read. This option must be given if sshd is not run as root (as the normal host key files are normally notreadable by anyone but root). The default is /etc/ssh/ssh_host_key for protocol version 1, and /etc/ssh/ssh_host_rsa_key and/etc/ssh/ssh_host_dsa_key for protocol version 2. It is possible to have multiple host key files for the different protocol versions and host keyalgorithms.

-i' Specifies that sshd is being run from inetd(8). sshd is normally not run from inetd because it needs to generate the server keybefore it can respond to the client, and this may take tens of seconds. Clients would have to wait too long if the key was regenerated every time. However,with small key sizes (e.g. 512) using sshd from inetd may be feasible.

-kkey_gen_time
Specifies how often the ephemeral protocol version 1 server key is regenerated (default 3600 seconds, or one hour). The motivation for regenerating the keyfairly often is that the key is not stored anywhere, and after about an hour it becomes impossible to recover the key for decrypting intercepted communicationseven if the machine is cracked into or physically seized. A value of zero indicates that the key will never be regenerated.

-ooption
Can be used to give options in the format used in the configuration file. This is useful for specifying options for which there is no separate command-lineflag. For full details of the options, and their values, see sshd_config(5).

-pport
Specifies the port on which the server listens for connections (default 22). Multiple port options are permitted. Ports specified in the configuration filewith the Port option are ignored when a command-line port is specified. Ports specified using the ListenAddress option override command-lineports.

-q' Quiet mode. Nothing is sent to the system log. Normally the beginning, authentication, and termination of each connection is logged.

-T' Extended test mode. Check the validity of the configuration file, output the effective configuration to stdout and then exit. Optionally,Match rules may be applied by specifying the connection parameters using one or more -C options.

-t' Test mode. Only check the validity of the configuration file and sanity of the keys. This is useful for updating sshd reliably asconfiguration options may change.

-ulen
This option is used to specify the size of the field in the utmp structure that holds the remote host name. If the resolved host name is longer thanlen, the dotted decimal value will be used instead. This allows hosts with very long host names that overflow this field to still be uniquelyidentified. Specifying -u0 indicates that only dotted decimal addresses should be put into the utmp file. -u0 may also be used to preventsshd from making DNS requests unless the authentication mechanism or configuration requires it. Authentication mechanisms that may require DNS includeRhostsRSAAuthentication, HostbasedAuthentication, and using a from='pattern-list' option in a key file. Configuration options that requireDNS include using a USER@HOST pattern in AllowUsers or DenyUsers.

Authentication

The OpenSSH SSH daemon supports SSH protocols 1 and 2. Both protocols are supported by default, though this can be changed via the Protocol option insshd_config(5). Protocol 2 supports both RSA and DSA keys; protocol 1 only supports RSA keys. For both protocols, each host has a host-specific key, normally2048 bits, used to identify the host.

Forward security for protocol 1 is provided through an additional server key, normally 768 bits, generated when the server starts. This key is normallyregenerated every hour if it has been used, and is never stored on disk. Whenever a client connects, the daemon responds with its public host and server keys.The client compares the RSA host key against its own database to verify that it has not changed. The client then generates a 256-bit random number. It encryptsthis random number using both the host key and the server key, and sends the encrypted number to the server. Both sides then use this random number as asession key which is used to encrypt all further communications in the session. The rest of the session is encrypted using a conventional cipher, currentlyBlowfish or 3DES, with 3DES being used by default. The client selects the encryption algorithm to use from those offered by the server.

For protocol 2, forward security is provided through a Diffie-Hellman key agreement. This key agreement results in a shared session key. The rest of thesession is encrypted using a symmetric cipher, currently 128-bit AES, Blowfish, 3DES, CAST128, Arcfour, 192-bit AES, or 256-bit AES. The client selects theencryption algorithm to use from those offered by the server. Additionally, session integrity is provided through a cryptographic message authentication code(hmac-md5, hmac-sha1, umac-64 or hmac-ripemd160).

Finally, the server and the client enter an authentication dialog. The client tries to authenticate itself using host-based authentication, public keyauthentication, challenge-response authentication, or password authentication.

Openssh Server

Regardless of the authentication type, the account is checked to ensure that it is accessible. An account is not accessible if it is locked, listed inDenyUsers or its group is listed in DenyGroups . The definition of a locked account is system dependant. Some platforms have their own accountdatabase (eg AIX) and some modify the passwd field ( '*LK*' on Solaris and UnixWare, '*' on HP-UX, containing 'Nologin' on Tru64, a leading '*LOCKED*' onFreeBSD and a leading '!' on most Linuxes). If there is a requirement to disable password authentication for the account while allowing still public-key, thenthe passwd field should be set to something other than these values (eg 'NP' or '*NP*' ).

If the client successfully authenticates itself, a dialog for preparing the session is entered. At this time the client may request things like allocating apseudo-tty, forwarding X11 connections, forwarding TCP connections, or forwarding the authentication agent connection over the secure channel.

After this, the client either requests a shell or execution of a command. The sides then enter session mode. In this mode, either side may send data at anytime, and such data is forwarded to/from the shell or command on the server side, and the user terminal in the client side.

When the user program terminates and all forwarded X11 and other connections have been closed, the server sends command exit status to the client, and bothsides exit.

Login Process

When a user successfully logs in, sshd does the following:

2. If the login is on a tty, records login time.

3. Checks /etc/nologin; if it exists, prints contents and quits (unless root).

4. Changes to run with normal user privileges.

5. Sets up basic environment.

6. Reads the file ~/.ssh/environment, if it exists, and users are allowed to change their environment. See the PermitUserEnvironment option insshd_config(5).

Server

7. Changes to user's home directory.

8. If ~/.ssh/rc exists, runs it; else if /etc/ssh/sshrc exists, runs it; otherwise runs xauth. The 'rc' files are given the X11authentication protocol and cookie in standard input. See SSHRC, below.

Openssh Server Gui

9. Runs user's shell or command.

Sshrc

If the file ~/.ssh/rc exists, sh(1) runs it after reading the environment files but before starting the user's shell or command. It must not produceany output on stdout; stderr must be used instead. If X11 forwarding is in use, it will receive the 'proto cookie' pair in its standard input (and DISPLAY inits environment). The script must call xauth(1) because sshd will not run xauth automatically to add X11 cookies.

The primary purpose of this file is to run any initialization routines which may be needed before the user's home directory becomes accessible; AFS is aparticular example of such an environment.

This file will probably contain some initialization code followed by something similar to:

if [ 'echo $DISPLAY | cut -c1-10' = 'localhost:' ]; then

# X11UseLocalhost=yes

echo add unix:'echo $DISPLAY |

cut -c11-' $proto $cookie

else

# X11UseLocalhost=no

echo add $DISPLAY $proto $cookie

fi | xauth -q -

fi

If this file does not exist, /etc/ssh/sshrc is run, and if that does not exist either, xauth is used to add the cookie.

AUTHORIZED_KEYS FILE FORMAT

AuthorizedKeysFile specifies the file containing public keys for public key authentication; if none is specified, the default is~/.ssh/authorized_keys. Each line of the file contains one key (empty lines and lines starting with a '#' are ignored as comments). Protocol 1 publickeys consist of the following space-separated fields: options, bits, exponent, modulus, comment. Protocol 2 public key consist of: options, keytype,base64-encoded key, comment. The options field is optional; its presence is determined by whether the line starts with a number or not (the options field neverstarts with a number). The bits, exponent, modulus, and comment fields give the RSA key for protocol version 1; the comment field is not used for anything (butmay be convenient for the user to identify the key). For protocol version 2 the keytype is 'ssh-dss' or 'ssh-rsa'.

Note that lines in this file are usually several hundred bytes long (because of the size of the public key encoding) up to a limit of 8 kilobytes, whichpermits DSA keys up to 8 kilobits and RSA keys up to 16 kilobits. You don't want to type them in; instead, copy the identity.pub, id_dsa.pub, orthe id_rsa.pub file and edit it.

sshd enforces a minimum RSA key modulus size for protocol 1 and protocol 2 keys of 768 bits.

The options (if present) consist of comma-separated option specifications. No spaces are permitted, except within double quotes. The following optionspecifications are supported (note that option keywords are case-insensitive):

Specifies that the command is executed whenever this key is used for authentication. The command supplied by the user (if any) is ignored. The command isrun on a pty if the client requests a pty; otherwise it is run without a tty. If an 8-bit clean channel is required, one must not request a pty or shouldspecify no-pty. A quote may be included in the command by quoting it with a backslash. This option might be useful to restrict certain public keys toperform just a specific operation. An example might be a key that permits remote backups but nothing else. Note that the client may specify TCP and/or X11forwarding unless they are explicitly prohibited. The command originally supplied by the client is available in the SSH_ORIGINAL_COMMAND environment variable.Note that this option applies to shell, command or subsystem execution.

environment='NAME=value'
Specifies that the string is to be added to the environment when logging in using this key. Environment variables set this way override other defaultenvironment values. Multiple options of this type are permitted. Environment processing is disabled by default and is controlled via thePermitUserEnvironment option. This option is automatically disabled if UseLogin is enabled.

from='pattern-list'
Specifies that in addition to public key authentication, either the canonical name of the remote host or its IP address must be present in the comma-separatedlist of patterns. See PATTERNS in ssh_config(5) for more information on patterns.

In addition to the wildcard matching that may be applied to hostnames or addresses, a from stanza may match IP addresses using CIDR address/masklennotation.

The purpose of this option is to optionally increase security: public key authentication by itself does not trust the network or name servers or anything(but the key); however, if somebody somehow steals the key, the key permits an intruder to log in from anywhere in the world. This additional option makesusing a stolen key more difficult (name servers and/or routers would have to be compromised in addition to just the key).

no-agent-forwarding
Forbids authentication agent forwarding when this key is used for authentication.

no-port-forwarding
Forbids TCP forwarding when this key is used for authentication. Any port forward requests by the client will return an error. This might be used, e.g. inconnection with the command option.

no-pty
Prevents tty allocation (a request to allocate a pty will fail).

no-user-rc
Disables execution of ~/.ssh/rc.

no-X11-forwarding
Forbids X11 forwarding when this key is used for authentication. Any X11 forward requests by the client will return an error.

permitopen='host:port'
Limit local 'ssh -L' port forwarding such that it may only connect to the specified host and port. IPv6 addresses can be specified with an alternativesyntax: host/port. Multiple permitopen options may be applied separated by commas. No pattern matching is performed on the specifiedhostnames, they must be literal domains or addresses.

tunnel='n'
Force a tun(4) device on the server. Without this option, the next available device will be used if the client requests a tunnel.

An example authorized_keys file:

# Comments allowed at start of line
ssh-rsa AAAAB3Nza...LiPk user@example.net
from='*.sales.example.net,!pc.sales.example.net' ssh-rsa
AAAAB2...19Q john@example.net
command='dump /home',no-pty,no-port-forwarding ssh-dss
AAAAC3...51R example.net
permitopen='192.0.2.1:80',permitopen='192.0.2.2:25' ssh-dss
AAAAB5...21S
tunnel='0',command='sh /etc/netstart tun0' ssh-rsa AAAA...
jane@example.net

SSH_KNOWN_HOSTS FILE FORMAT

The /etc/ssh/ssh_known_hosts and ~/.ssh/known_hosts files contain host public keys for all known hosts. The global file should be prepared bythe administrator (optional), and the per-user file is maintained automatically: whenever the user connects from an unknown host, its key is added to theper-user file.

Each line in these files contains the following fields: hostnames, bits, exponent, modulus, comment. The fields are separated by spaces.

Hostnames is a comma-separated list of patterns ('*' and '?' act as wildcards); each pattern in turn is matched against the canonical host name (whenauthenticating a client) or against the user-supplied name (when authenticating a server). A pattern may also be preceded by '!' to indicate negation: if thehost name matches a negated pattern, it is not accepted (by that line) even if it matched another pattern on the line. A hostname or address may optionally beenclosed within '[' and ']' brackets then followed by ':' and a non-standard port number.

Alternately, hostnames may be stored in a hashed form which hides host names and addresses should the file's contents be disclosed. Hashed hostnames startwith a '|' character. Only one hashed hostname may appear on a single line and none of the above negation or wildcard operators may be applied.

Bits, exponent, and modulus are taken directly from the RSA host key; they can be obtained, for example, from /etc/ssh/ssh_host_key.pub. The optionalcomment field continues to the end of the line, and is not used.

Lines starting with '#' and empty lines are ignored as comments.

When performing host authentication, authentication is accepted if any matching line has the proper key. It is thus permissible (but not recommended) tohave several lines or different host keys for the same names. This will inevitably happen when short forms of host names from different domains are put in thefile. It is possible that the files contain conflicting information; authentication is accepted if valid information can be found from either file.

Note that the lines in these files are typically hundreds of characters long, and you definitely don't want to type in the host keys by hand. Rather,generate them by a script or by taking /etc/ssh/ssh_host_key.pub and adding the host names at the front.

An example ssh_known_hosts file:

Files

This file is used to suppress printing the last login time and /etc/motd, if PrintLastLog and PrintMotd, respectively, are enabled. Itdoes not suppress printing of the banner specified by Banner.

~/.rhosts
This file is used for host-based authentication (see ssh(1) for more information). On some machines this file may need to be world-readable if the user's homedirectory is on an NFS partition, because sshd reads it as root. Additionally, this file must be owned by the user, and must not have write permissionsfor anyone else. The recommended permission for most machines is read/write for the user, and not accessible by others.

~/.shosts
This file is used in exactly the same way as .rhosts, but allows host-based authentication without permitting login with rlogin/rsh.

~/.ssh/
This directory is the default location for all user-specific configuration and authentication information. There is no general requirement to keep the entirecontents of this directory secret, but the recommended permissions are read/write/execute for the user, and not accessible by others.

~/.ssh/authorized_keys
Lists the public keys (RSA/DSA) that can be used for logging in as this user. The format of this file is described above. The content of the file is not highlysensitive, but the recommended permissions are read/write for the user, and not accessible by others.

If this file, the ~/.ssh directory, or the user's home directory are writable by other users, then the file could be modified or replaced byunauthorized users. In this case, sshd will not allow it to be used unless the StrictModes option has been set to 'no'.

~/.ssh/environment
This file is read into the environment at login (if it exists). It can only contain empty lines, comment lines (that start with '#'), and assignment lines ofthe form name=value. The file should be writable only by the user; it need not be readable by anyone else. Environment processing is disabled by default and iscontrolled via the PermitUserEnvironment option.

~/.ssh/known_hosts
Contains a list of host keys for all hosts the user has logged into that are not already in the systemwide list of known host keys. The format of this file isdescribed above. This file should be writable only by root/the owner and can, but need not be, world-readable.

~/.ssh/rc
Contains initialization routines to be run before the user's home directory becomes accessible. This file should be writable only by the user, and need not bereadable by anyone else.

/etc/hosts.allow
/etc/hosts.deny
Access controls that should be enforced by tcp-wrappers are defined here. Further details are described in hosts_access(5).

/etc/hosts.equiv
This file is for host-based authentication (see ssh(1)). It should only be writable by root.

/etc/ssh/moduli
Contains Diffie-Hellman groups used for the 'Diffie-Hellman Group Exchange'. The file format is described in moduli(5).

/etc/motd
See motd(5).

/etc/nologin
If this file exists, sshd refuses to let anyone except root log in. The contents of the file are displayed to anyone trying to log in, and non-rootconnections are refused. The file should be world-readable.

/etc/ssh/shosts.equiv
This file is used in exactly the same way as hosts.equiv, but allows host-based authentication without permitting login with rlogin/rsh.

/etc/ssh/ssh_host_key
/etc/ssh/ssh_host_dsa_key
/etc/ssh/ssh_host_rsa_key
These three files contain the private parts of the host keys. These files should only be owned by root, readable only by root, and not accessible to others.Note that sshd does not start if these files are group/world-accessible.

/etc/ssh/ssh_host_key.pub
/etc/ssh/ssh_host_dsa_key.pub
/etc/ssh/ssh_host_rsa_key.pub
These three files contain the public parts of the host keys. These files should be world-readable but writable only by root. Their contents should match therespective private parts. These files are not really used for anything; they are provided for the convenience of the user so their contents can be copied toknown hosts files. These files are created using ssh-keygen(1).

/etc/ssh/ssh_known_hosts
Systemwide list of known host keys. This file should be prepared by the system administrator to contain the public host keys of all machines in theorganization. The format of this file is described above. This file should be writable only by root/the owner and should be world-readable.

/etc/ssh/sshd_config
Contains configuration data for sshd. The file format and configuration options are described in sshd_config(5).

/etc/ssh/sshrc
Similar to ~/.ssh/rc, it can be used to specify machine-specific login-time initializations globally. This file should be writable only by root, andshould be world-readable.

/var/empty/sshd
chroot(2) directory used by sshd during privilege separation in the pre-authentication phase. The directory should not contain any files and must beowned by root and not group or world-writable.

/var/run/sshd.pid
Contains the process ID of the sshd listening for connections (if there are several daemons running concurrently for different ports, this contains theprocess ID of the one started last). The content of this file is not sensitive; it can be world-readable.

Environment

The reseeding of the OpenSSL random generator is usually done from /dev/urandom. If the SSH_USE_STRONG_RNG environment variable is set tovalue other than 0

Postgresql Server

the OpenSSL random generator is reseeded from /dev/random. The number of bytes read is defined by the SSH_USE_STRONG_RNGvalue. Minimum is 6 bytes. This setting is not recommended on the computers without the hardware random generator because insufficient entropy causes theconnection to be blocked until enough entropy is available.

IPV6

IPv6 address can be used everywhere where IPv4 address. In all entries must be the IPv6 address enclosed in square brackets. Note: The square brackets aremetacharacters for the shell and must be escaped in shell.

See Also

scp(1), sftp(1), ssh(1), ssh-add(1), ssh-agent(1), ssh-keygen(1), ssh-keyscan(1), chroot(2), hosts_access(5), login.conf(5), moduli(5), sshd_config(5),inetd(8), sftp-server(8)

Authors

OpenSSH is a derivative of the original and free ssh 1.2.12 release by Tatu Ylonen. Aaron Campbell, Bob Beck, Markus Friedl, Niels Provos, Theo de Raadt andDug Song removed many bugs, re-added newer features and created OpenSSH. Markus Friedl contributed the support for SSH protocol versions 1.5 and 2.0. NielsProvos and Markus Friedl contributed support for privilege separation.

Caveats

System security is not improved unless rshd, rlogind, and rexecd are disabled (thus completely disabling rlogin and rsh into themachine).

BSD April 14, 2013 BSD

Referenced By

afpd.conf(5),gsimoduli

Openssh Server W10

(5),gsissh(1),gsissh-keygen(1),gsissh-keysign(8),gsissh_config(5),gsisshd_config(5),ltsp-update-sshkeys(8),pts(4),rootdOpenssh(1),rssh(1),rssh.conf(5),scponly(8),ssh-copy-id(1),ssh-keysign(8),ssh-ldap-helper(8),sshd_selinux(8),sss_ssh_authorizedkeys(1),sss_ssh_knownhostsproxy(1)-->

OpenSSH is the open-source version of the Secure Shell (SSH) tools used by administrators of Linux and other non-Windows for cross-platform management of remote systems.OpenSSH has been added to Windows as of autumn 2018, and is included in Windows 10 and Windows Server 2019.

SSH is based on a client-server architecture where the system the user is working on is the client and the remote system being managed is the server.OpenSSH includes a range of components and tools designed to provide a secure and straightforward approach to remote system administration, including:

  • sshd.exe, which is the SSH server component that must be running on the system being managed remotely
  • ssh.exe, which is the SSH client component that runs on the user's local system
  • ssh-keygen.exe generates, manages and converts authentication keys for SSH
  • ssh-agent.exe stores private keys used for public key authentication
  • ssh-add.exe adds private keys to the list allowed by the server
  • ssh-keyscan.exe aids in collecting the public SSH host keys from a number of hosts
  • sftp.exe is the service that provides the Secure File Transfer Protocol, and runs over SSH
  • scp.exe is a file copy utility that runs on SSH

Openssh Server

Documentation in this section focuses on how OpenSSH is used on Windows, including installation, and Windows-specific configuration and use cases. Here are the topics:

Install Openssh Server Ubuntu

Additional detailed documentation for common OpenSSH features is available online at OpenSSH.com.

Openssh Server Install Failed

The master OpenSSH open source project is managed by developers at the OpenBSD Project.The Microsoft fork of this project is in GitHub.Feedback on Windows OpenSSH is welcomed and can be provided by creating GitHub issues in our OpenSSH GitHub repo.